
The Unfortunate Reality of Insecure Libraries

Jeff Williams, Chief Executive Officer

Arshan Dabirsiaghi, Director of Research

Aspect Security, Inc.

March 2012

 2)

The Unfortunate Reality of Insecure Libraries

Abstract

ighty percent of the code in today’s applications comes from libraries and frameworks, but the
risk of vulnerabilities in these components is widely ignored and under appreciated. A vulner-

able library can allow an attacker to exploit the full privilege of the application, including accessing
any data, executing transactions, stealing files, and communicating with the Internet. Organizations
literally trust their business to the libraries they use.

In partnership with Sonatype, researchers from Aspect Security analyzed 113 million downloads from
the Central Repository (“Central”) of the 31 most popular Java frameworks and security libraries and
made some conclusions about this important aspect of application security. Central is the industry’s
most widely used repository of open-source components, and currently contains more than 300,000
libraries. We analyzed more than 113 million downloads of these libraries from more than 60,000
commercial, government, and non-profit organizations.

Our analysis revealed several interesting findings, including:

	 • 	 29.8 million (26%) of library downloads have known vulnerabilities

	 • 	 The most downloaded vulnerable libraries were GWT, Xerces, Spring MVC, and Struts 1.x

	 • 	 Security libraries are slightly more likely to have a known vulnerability than frameworks

	 • 	 Based on typical vulnerability rates, the vast majority of library flaws remain undiscovered

	 • 	 Neither presence nor absence of historical vulnerabilities is a useful security indicator

	 • 	 Typical Java applications are likely to include at least one vulnerable library

The data show that most organizations do not appear to have a strong process in place for ensuring
that the libraries they rely upon are up-to-date and free from known vulnerabilities. We conclude
that there are no shortcuts to a secure application infrastructure and that the only useful indicator of
library security is a broad and rigorous review that finds minimal vulnerability.

This paper is not a critique of open source libraries, and we caution against interpreting this analysis
as such. The authors are strong advocates of free and open software and created two of the security
libraries studied. Instead, we recommend that organizations recognize that libraries are a critical part
of their software infrastructure and ensure they have the level of awareness and the necessary tool-
ing within their organization to generate appropriate assurance.

E

3)

The Unfortunate Reality of Insecure Libraries

Study Design

In partnership with Sonatype, Aspect Security researchers analyzed more than 113 million downloads of the 31
most popular Java frameworks and security libraries from the Central Repository. The 31 libraries were
selected by examining over 500 enterprise applications submitted to Aspect Security for code review and
security testing in the past 12 months.

The 20 frameworks and 11 security libraries selected are a small but frequently downloaded subset of the
more than 36,000 libraries (and 303,000 total versions) in the Central Repository (“Central”). Our dataset
analyzed the downloads of these libraries from Central in the past 12 months:

These numbers represent a partial view into the true picture of library use since many organizations,
particularly larger enterprise class organizations, are likely to download libraries to their own local reposito-
ries for internal reuse. Downloads from these repositories and direct downloads of libraries from project
web sites are not included in the study. These factors not withstanding, we believe that the large size of the
dataset provides strong support for the conclusions of the study.

The study focuses only on open-source Java libraries, but there is no reason to believe that the data for
other languages and platforms would be significantly different. Similarly, our experience in evaluating the
security of hundreds of custom applications indicates that the findings are likely to apply to closed-source
and commercial libraries as well.

Library Security Risks

While many organizations are awakening to the idea that their custom code needs security attention, very
few have yet realized the risk from libraries. Libraries are software modules designed to perform commonly
required functions. Central contains over 300,000 components with an average of 8 versions each. There
are tens of thousands of open-source projects on the Internet to develop these libraries and many com-
mercial closed-source libraries as well. Many organizations have “open-source initiatives” to expand the use
of these low-cost resources. The common misperception of open source libraries is that they are of consis-
tently high quality and secure, due to their widespread usage and the ability of any developer to review the
source code to identify and resolve any problems in the code.

Applications leverage these libraries throughout their execution. They provide
support for business functions, data access, resource management, commu-
nications, and user interface creation. Today’s applications commonly use 30
or more libraries, which can comprise up to 80% of the code in an application.

Libraries run with the full privilege of the application, enabling them to access
any data, write to any file, and send data to the Internet, literally anything
the application could do. Therefore, a vulnerability in these libraries can com-
pletely undermine the security of the entire application.

Libraries run with the full privi-
lege of the application, enabling
them to access any data, write
to any file, and send data to the
Internet, literally anything the
application could do. Therefore,
a vulnerability in these libraries
can completely undermine
the security of the entire
application.

Dataset Value

Libraries 31

Library Versions 1,261

Companies 61,807

Downloads 113,939,358

 4)

The Unfortunate Reality of Insecure Libraries

In this study, we focus on two types of libraries that are particularly security critical. The first type is the
“framework” – a library that provides the common code necessary to generate a web application. The other
type is the “security library” that provides security controls such as encryption, input validation, logging,
access control, and other critical security functions.

Inadvertent Vulnerabilities in Libraries

Inadvertent coding mistakes in libraries can allow attackers to cause serious
harm. These mistakes are quite common and are far easier for developers to
make than most people realize. In fact, MITRE has catalogued almost 1,000
different classes of these mistakes in their Common Weakness Enumeration
(CWE) database. All of these flaws are tricky, and they are neither taught in
school nor easy for coders to identify on their own.

Security researchers periodically discover vulnerabilities in libraries and make them available through a
disclosure process of their own choosing. Some of these disclosures are coordinated, others simply write
blog posts or emails to mailing lists. Our dataset maps the vulnerabilities listed in the MITRE Common
Vulnerabilities and Exposures (CVE) and the Open Source Vulnerability Database (OSVDB) to the appropri-
ate library. We used this mapping to analyze the dataset for patterns indicating the causes of vulnerable
libraries.

Not all inadvertent vulnerabilities are created equal. While some vulnerabilities allow the complete take-
over of the host using them, others might result in data loss or corruption, and still others might provide a
bit of useful information to attackers. In most cases, the impact of a vulnerability depends greatly on how
the library is used by the application. A flawed library might result in a devastating exposure in one applica-
tion and no exposure at all in another.

There are a variety of factors that may prevent an inadvertent vulnerability from being exploitable in a
particular application. The most common is that the vulnerability is in a part of the library code that is not
used by the application. Another reason is that the vulnerability is shielded by input validation, access
control, transformation, or other security controls in the application that prevents exploit.

Based on this discussion, one might (wrongly) conclude that the use of vulnerable libraries is an acceptable
risk. It might be argued that developers can work around the problems in components. Or, developers
might rely on automated tools to catch vulnerabilities in applications. Or, developers might believe that
their penetration testing process will uncover any exploitable problems in the final application.

Unfortunately, in order to work around a problem, developers have to know that it is there. Currently,
developers have no way to know that the library versions they are using have known vulnerabilities. They
would have to monitor dozens of mailing lists, blogs, and forums in order to stay abreast of this information.
Further, development teams are unlikely to find their own vulnerabilities, as it requires extensive security
experience and automated tools are largely ineffective at analyzing libraries.

Establishing a process to manage vulnerable library versions in an organization is a relatively easy way
to eliminate a significant amount of risk from an application portfolio. By focusing efforts on a small set
of approved libraries, one organization that engaged our services was able to eliminate thousands of old
vulnerable components and versions and save millions of dollars maintaining their software portfolio.

Inadvertent coding mistakes in
libraries can allow attackers to
cause serious harm. These mis-
takes are quite common and
are far easier for developers to
make than most people realize.

5)

The Unfortunate Reality of Insecure Libraries

Three Recent Vulnerabilities in Very Popular Libraries
Vulnerability: Struts2 Remote Code Execution

Struts2 is a fairly popular remake of the highly successful Struts framework. Un-
fortunately, Struts2 has suffered a series of remote code execution flaws that have
affected all known versions. In the last year, Struts2 was downloaded more than
1 million times by over 18,000 organizations. In 2010, a researcher from Google’s
Security team discovered a unique class of weakness in the library that allowed at-
tackers to execute arbitrary code on any Struts2 web application.

Essentially, their use of the Object Graph Navigation Language (OGNL) included data
provided by users, allowing attackers to access data objects and invoke arbitrary

methods, such as Runtime.exec(). The implication is that a successful exploit could completely compromise
an application and the host on which it runs. These flaws resulted in numerous vulnerable downloads in the
last 12 months. These flaws don’t require authentication or special skills to exploit. Since then, Google and
others have regularly unearthed similar critical flaws.

Vulnerability: Spring Expression Language Injection

Spring is the most popular application development framework for Java. It was down-
loaded over 18 million times by over 43,000 organizations in the last year, during

which time many vulnerable versions
were created and downloaded.

Aspect Security and Minded Security
collaborated on a whitepaper (https://
www.aspectsecurity.com/expression-
language-injection) in 2011 that discuss-

es a new class of vulnerabilities in Spring’s use of Expression Language (EL). This
vulnerability allows attackers to submit HTTP parameters that get interpreted as EL
and executed. An exploit can leak data out of the server, including sensitive informa-
tion such as system data, application data, and user cookies.

This attack doesn’t require a lot of skill or authentication. When processing this request, Spring takes the user’s
parameter and evaluates it. Spring sends the result of this evaluation back to the user, accidentally leaking
important session data.

Vulnerability: CXF – Authentication Bypass

Apache CXF is a framework for developing Web Services, from small JSON utilities for web applications to a full scale
enterprise service bus (ESB). CXF was downloaded 4.2 million times by more than 16,000 organizations in the past
12 months. Since 2010, CXF has had two major vulnerabilities (CVE-2010-2076 and CVE 2012-0803) that allowed
attackers to trick any service using CXF to download arbitrary system files and entirely bypass authentication.

The authentication bypass was rated “Critical.” A user could access any protected resource by simply not passing in
the expected WS-Security “UsernameToken” field. This exposed all business Web Services written in CXF. To many
businesses, this is the worst possible vulnerability.

Spring is the most popular application
development framework for Java. It was
downloaded over 18 million times by over
43,000 organizations in the last year, during
which time many vulnerable versions were
created and downloaded.

CVE-2011-2730 exploit to steal data out
of a user’s session:

http://example.org/springapp/
search?query=${requestScope}

Your search for: “
javax.servlet.forward.request_uri=/ELI
njection/eval.htm,javax.servlet.for-
ward.servlet_path=/eval.htm,user.
roles=[ADMIN,USER,ANONYMOUS]
display name [WebApplicationContext
for namespace ‘cashflowServlet’];
startup by [uid=root, Tue Jul 19 22:35:58
EEST 2011];org.springframework.web.
servlet.view.InternalResourceView.DIS-
PATCHED_PATH=/var/opt/test/eval.jsp,...”
returned zero results.

CVE-2010-1870 exploit to run
arbitrary system command:

http://example.org/struts2app/myac
tion?foo=%28%23context[%22xwork.
MethodAccessor.denyMethodExecutio
n%22]%3D+[...],%20%23_memberAcce
ss[%22allowStaticMethodAccess%22]%
3d+[...],%20@java.lang.Runtime@get-
Runtime%28%29.exec%28%27mkdir%20/
tmp/PWND%27%29[...]27meh%27%29]
=true

 6)

The Unfortunate Reality of Insecure Libraries

Most Vulnerabilities Are Undiscovered

In this study, we examine a set of vulnerabilities that were discovered inadvertently by a diverse set of
dedicated and talented researchers. The libraries in this study are the most popular components and they
have received considerably more scrutiny than the rest of the 300,000 libraries in Central. While the other
libraries have fewer “known” vulnerabilities, we would expect that they actually contain numerous vulner-
abilities that are yet to be discovered.

Libraries typically vary in size from 10,000 to 200,000 lines of code. Aspect’s
code review practice has evaluated thousands of applications, and found that
custom Java applications contain from 5 to 10 security vulnerabilities per
10,000 lines of code. Given these rates, it is extremely unlikely that a library
has never had a vulnerability introduced. It is far more likely that libraries
have simply not been examined for vulnerabilities. Therefore, libraries with
no known vulnerabilities should not automatically be considered safe. By the
same token, libraries with a history of many vulnerabilities should not neces-

sarily be considered unsafe. A responsible application security process will naturally uncover vulnerabilities
and report them so that users can protect themselves. Because the discovery of a vulnerability generally
affects all previous versions, we should expect most older versions to have known vulnerabilities. The pres-
ence of known vulnerabilities is evidence of this responsible process. Paradoxically, neither the presence
nor absence of known vulnerabilities reveals much information about the security of a library. Instead, we
suggest that the best indicator of a library’s future security is a culture that places value on security and
clear evidence of broad and rigorous security analysis.

Our dataset includes 70 vulnerabilities that affect the 31 libraries in the study. That is roughly one-quarter
of what we would expect based on typical vulnerability rates. Are there another 210 vulnerabilities waiting
to be discovered in these 31 libraries? Are there 3 million undiscovered vulnerabilities in all the libraries
currenly in Central? Even if we simply extrapolate the vulnerability rate for the libraries in our sample, we
should expect almost 680,000 more vulnerabilities in these libraries.

We must assume that malicious attackers are capable of discovering new library vulnerabilities before they
become public knowledge and that they are motivated to do so. There is a statistical certainty that numer-
ous undiscovered vulnerabilities exist in the Central repository, and these libraries deserve considerably
more security scrutiny than they currently receive.

Libraries typically vary in size
from 10,000 to 200,000 lines
of code. Aspect’s code review
practice has evaluated thousands
of applications, and found that
custom Java applications contain
from 5 to 10 security vulnerabili-
ties per 10,000 lines of code.

7)

The Unfortunate Reality of Insecure Libraries

Dependency Management and Security

Aspect Security performs security assessments of applications totaling roughly five million lines of code
every month. We have consistently found widespread use of out-of-date libraries, including those with
known vulnerabilities. We also provide secure coding training to thousands of developers every year. When
we discuss their process, development teams readily acknowledge, often with some level of embarrass-
ment, that they make no efforts to keep their libraries up-to-date.

Dependency management is the process used by development teams to identify which libraries their proj-
ect directly depends on, and recursively determining all of the further dependencies that those libraries
require. By making it significantly easier for developers to pull libraries into their projects, the use of depen-
dency management has resulted in the rapid growth of the number of libraries used in applications. This has
caused the total size of applications to grow rapidly as more and more libraries are pulled in.

Dependency management has the potential to yield several security benefits. In theory, this process could
enable organizations to keep libraries more up-to-date, gain awareness of security vulnerabilities in libraries
more quickly, and ensure that libraries have appropriate licenses.

However, these potential security benefits have yet to materialize. Even though there have been ample
demonstrations of the cost of not controlling supply chains in other industries, little has been done to es-
tablish this control in the software industry. While organizations typically have strong patch management
processes for software products, open source libraries are typically not part of these processes. In virtually
all development organizations, updates to libraries are handled on an ad-hoc basis, by development teams.

Java Library Usage Statistics

The data reveals extremely heavy use of the 31 libraries by a wide range of orga-
nizations, including almost half the Global 500. The chart below illustrates that
Spring MVC is, by far, the most widely downloaded library studied with more
than 10 million downloads in the past twelve months. Spring MVC is a frame-
work library that allows software developers to focus on the business logic and

The data reveals extremely
heavy use of the 31 libraries by
a wide range of organizations,
including almost half the
Global 500.

Total Downloads of Each Library

 8)

The Unfortunate Reality of Insecure Libraries

“look and feel” of their application, without having to create and maintain all the “plumbing” to make the
application work.

The next two most frequently downloaded libraries are Apache CXF and Hibernate. Apache CXF is a
services framework that helps developers build services using a variety of protocols and transports. Hiber-
nate is a persistence library that helps programmers map their data structures into a database.

While Spring MVC was the most frequently downloaded library in this study, Log4j reached more organiza-
tions. Log4j was downloaded by 45,000 organizations in the last twelve months. One possible explanation
is that organizations of all sizes need a strong logging library. Another is that many of the open source
frameworks include Log4j as a dependency, and it gets automatically downloaded with the framework.

Do Organizations Download Old Versions?

Organizations download many old versions of libraries. In fact, several of the libraries that have been around
for a longer period of time, such as BouncyCastle (an encryption library), Hibernate (a persistence library),
and Struts 1.x (a web framework) all have extremely popular versions that are over 5 years old.

The data is quite complex, as every library has a different release cycle and version scheme. However, the
graph below shows that the most popular versions of libraries are within six months, but after that, the
popularity seems to level off, suggesting that libraries are continuing to be downloaded for a very long time.
Sonatype, who maintains the Central Repository, ranks version popularity on a scale of 0 to 100, with the
most popular artifact receiving a score of 100 and others being scaled down appropriately.

Number of Organizations that Downloaded Each Library

9)

The Unfortunate Reality of Insecure Libraries

If people were updating their libraries, we would have expected the popularity of older libraries to drop to
zero within the first two years. However, the data clearly show popularity extending back over six years. One
possible explanation is that some projects, perhaps new development efforts, tend to use the latest version
of a library, accounting for the spike in popularity for the libraries in the first year. The continuing popular-
ity of libraries for extended months suggests that incremental releases of legacy applications are not being
updated to use the latest versions of libraries but are continuing to use older versions.

Do Organizations Download Vulnerable Versions?

If organizations download old versions, it stands to reason that they also download vulnerable versions. We
discovered that 37% of the 1,261 versions of the 31 libraries we studied contain a CVE or OSVDB vulner-
ability associated with their use. Further, we found that 26% of the downloads of these libraries contained
known CVE or OSVDB vulnerabilities.

In sum, during the last 12 months, there were 29.8 million vulnerable jar files
downloaded, out of a total of 113 million downloads. That magnitude of down-
loads means there are quite a lot of vulnerable applications in use. This data
shows that security is not a major consideration in the determination of which
library to download.

In sum, during the last 12
months, there were 29.8 million
vulnerable jar files download-
ed, out of a total of 113 million
downloads. That magnitude
of downloads means there
are quite a lot of vulnerable
applications in use.

Version Popularity by Age in Quarters

Age of Library in Quarters

A
ve

ra
ge

 P
op

ul
ar

it
y

of
 V

er
si

on
 D

ow
nl

oa
de

d
by

 A
ge

 10)

The Unfortunate Reality of Insecure Libraries

This number may be significantly underestimated because many developers get their libraries from local
repositories (e.g. Sonatype’s Nexus Repository Manager). These local repositories store, often in perpetuity,
libraries within an organization and can mask an organization’s ongoing use of these cached files from the
dataset.

Examining the specific libraries, we see that Google Web Toolkit (GWT) has more vulnerable down-
loads by an order of magnitude than any other library. GWT is a user-interface framework that
allows Java web applications to create dynamic user interfaces that leverage JavaScript in the brows-
er. GWT had a huge number of downloads and numerous vulnerable versions released in 2011.
When shown along with downloads of versions without known vulnerabilities, the overall picture of the
vulnerabilities becomes more clear. The overwhelming number of vulnerable GWT downloads is obvious.

Total Downloads of Vulnerable Libraries (Logarithmic)

No Known
Vulnerabilities

63%

Contains
Known

Vulnerabilities
37%

All Libraries

No Known
Vulnerabilities

74%

Contains
Known

Vulnerabilities
26%

Downloaded

11)

The Unfortunate Reality of Insecure Libraries

The analysis of vulnerable downloads by the year the version was created shows a disturbing trend. We
expected that older libraries were more likely to be vulnerable downloads. But we found the opposite –
newer libraries were considerably more likely to be a vulnerable download. In fact, from our dataset of the
most popular libraries, 35% of the downloads of versions created in 2011 were vulnerable, compared to an
average of 15% for libraries created in 2007.

The primary explanation for the trend is GWT that represents about one-third of the downloads of libraries
created in 2011 and 97% of the vulnerable ones. When we remove GWT from the data, the trend returns
to what we would have expected. However, because there were so many downloads of vulnerable versions
of GWT in 2011, it still means that there are large number of vulnerable applications that use those versions.

Comparing Ratios of Vulnerable Downloads

Vulnerable Downloads by Year of Creation

 12)

The Unfortunate Reality of Insecure Libraries

Does Version Popularity Indicate Security?

In Central, we can measure the popularity of each version against the others. For a given library, the
versions are ranked on a scale of 0 to 100, with the most popular artifact receiving a score of 100 and others
being scaled down appropriately.

We found that popular versions are 10% less likely to contain a known vulnerability. This is probably due to
the fact that popular releases have typically been through several release cycles, allowing bugs to be identi-
fied and fixed.

Popularity and Known Vulnerabilities

Not Popular Popular

38%
28%

72%62%

Vulnerable Downloads without GWT

13)

The Unfortunate Reality of Insecure Libraries

Applications typically include many different libraries, which significantly
increases the likelihood that an application will contain a vulnerable library.
Developers are playing a strange computer version of Russian roulette when
including libraries in their application. Imagine an application that uses 10
libraries from our dataset of the most popular frameworks and security librar-
ies. Even if developers select popular releases of all the libraries they need,
there’s still a 28% chance that each of them is vulnerable. Because our example application uses ten
libraries, the chance that the application includes at least one vulnerable library is more than 95%.

Does a Library’s Open Source License Indicate Security?

Arguments have been made for decades about whether open-source code should be considered more or
less secure than closed source. At Aspect Security, we are avid proponents of open source security and
have contributed many projects through the Open Web Application Security Project (OWASP) and other
organizations.

Although there are clearly differences in the rates of vulnerability for the different licenses, it would be
incorrect to assume that the choice of license somehow correlates to the level of security consciousness
of the project’s developers. We considered the possibility that specific terms in the license would pro-
vide greater encouragement for security researchers to analyze the code for vulnerabilities. However, we
conclude that it is more likely that security researchers simply focus on the most successful libraries and
frameworks regardless of the license.

Applications typically include
many different libraries, which
significantly increases the likeli-
hood that an application will
contain a vulnerable library.

Licenses and Known Vulnerabilities

 14)

The Unfortunate Reality of Insecure Libraries

We recommend that organizations make their commitment to security clear. A strong security culture in
some organizations, such as BSD, may reduce the likelihood of vulnerabilities in their codebase. It’s hard
to read BSD’s security page and not be encouraged about their approach. Their page starts with the quote
below and we encourage you to read it in its entirety:

However, though their culture may encourage security, not all BSD licensed libraries come from OpenBSD.
Therefore, we can’t support any generalizations about security based on the license selected by the project.
However, it is possible that some aspect of the license selected by project leaders does affect the likelihood
of vulnerabilities being discovered. This will make an interesting research project for the future.

Are Frameworks and Security Libraries Equally Vulnerable?

Vulnerabilities in security libraries are critical, as even the slightest vulnerability can cause significant expo-
sure. The cryptographic community has established a thriving community of both “builders” and “breakers”
that regularly advances the state of the art. Their ecosystem has a long record of creating strong security
controls and improving them over time. All security controls should evolve in this type of ecosystem, but
they don’t.

To help fill this void, Aspect created the OWASP ESAPI security library and leads this free and open project.
The library is used by over 1,400 organizations and is one of the security libraries in this study. The ESAPI
project invented new defenses for web applications like context-sensitive output encoders, canonicaliza-
tion for web encodings, access reference maps, and realtime application intrusion detection. ESAPI has
also been scrutinized by security researchers, received line-by-line code reviews from several very large
organizations, and underwent a full review by the U.S. National Security Agency. This proactive approach
has produced positive results for the OWASP ESAPI project. We highly recommend creating a culture of
“builders” and “breakers” in your own organization.

We expected that security libraries would have fewer vulnerabilities on average than web frameworks
because they are so critical and should have been written carefully with security in mind. However, security
libraries are roughly 20% more likely to have a reported security vulnerability than a web framework. These
libraries provide critical security functions and must be held to a higher level of assurance.

“OpenBSD believes in strong security. Our aspiration is to

be NUMBER ONE in the industry for security (if we are not

all ready there). Our open software development model

permits us to take a more uncompromising view towards

increased security than Sun, SGI, IBM, HP, or other vendors

are able to. We can make changes the vendors would not

make.”

–http://www.openbsd.org/security.html

15)

The Unfortunate Reality of Insecure Libraries

We suspect that security libraries may have more reported vulnerabilities because they naturally attract a
greater degree of scrutiny by security researchers and attackers. This may explain the greater incidence of
security vulnerability reports for these libraries. As we mentioned, our dataset does not include the level
of scrutiny targeting each library. It is also possible that because security libraries are specifically focused on
security-critical code, virtually any bug is likely to be a reportable security vulnerability.

Despite the higher rate of reported vulnerabilities in security libraries, we do not recommend writing your
own security controls. There are a huge number of subtle mistakes that can introduce vulnerabilities into
controls written by the best developers. The best route to a secure set of controls for developers is to use
proven and tested components and carefully have your implementation verified by security experts. You
can improve your odds by externalizing and standardizing your controls.

Do the Global 500 Use Libraries Differently?

The data reveals that almost half of the Global 500 use these libraries. Spring
MVC was the overwhelming download leader with over 100 downloads per
hour during the past 12 months. Of the security libraries, Log4j was the leader
with over 152,000 downloads.

We suspect that these numbers are significantly underreported, as we are not
able to correctly associate all of the downloads with an organization (due to
repository managing caching). Many downloads were attributed to an Internet
provider, and slightly over 40% of the downloads could not be attributed to
any specific organization. We conclude that many developers are downloading from home or other net-
works not associated with an organization. We also know through our work that many organizations not
represented in the data are using Central and that many have designed their networks to camouflage their
identity when employees access the Internet.

The data reveals that almost
half of the Global 500 use these
libraries. Spring MVC was the
overwhelming download leader
with over 100 downloads per
hour during the past 12 months.
Of the security libraries, Log4j
was the leader with over 152,000
downloads.

Vulnerabilities in Frameworks and Security

36%
56%

44%64%

 16)

The Unfortunate Reality of Insecure Libraries

There does seem to be a significant difference in how many of the 31 libraries are used by the organizations
studied. On average, the Global 500 downloaded 19.2 of the 31 libraries in this study. Smaller organizations
downloaded an average of only 8.5 of the libraries studied.

Since the larger organizations have considerably larger application portfolios, it is not surprising that
they use more of the libraries. However, this is also a concern because there is considerable overlap in
the libraries selected. That means that the larger organizations have not standardized on a small set of
framework and security libraries. More libraries means more code. And more code increases the chance
of a devastating vulnerability.

How Many of These 31 Libraries Do They Use?

All the
Rest
8.5

Global 500
19.2

Downloads by Global 500 (Logarithmic)

17)

The Unfortunate Reality of Insecure Libraries

There does not seem to be a difference in the libraries used by the Global 500 and the smaller organizations
in the study. Almost all of the libraries received between 7 and 10 percent of their downloads from the
Global 500. We expected to find disproportionately high adoption of security libraries by the Global 500 as
compared to all the other companies, but that hypothesis was not supported by the data.

Only two libraries, AntiSamy and HDIV, are disproportionately represented in the Global 500 compared to
other libraries. AntiSamy, created by one of the authors of this article, received almost 22% of downloads
from the Global 500. AntiSamy removes attacks from third-party HTML content to make it safe to use in
webpages.

HDIV adds integrity checks to HTTP input fields and received 17% of its downloads from the Global 500.
Perhaps this evidence demonstrates that enterprise frameworks do not provide these niche security
functions.

Global 500 Library Use

 18)

The Unfortunate Reality of Insecure Libraries

Recommendations
Given the presence of vulnerabilities in commonly used versions of popular libraries in Central, we strongly recom-
mend that you take steps to minimize the risks to your organization. You should consider the risk from all libraries,
including those with known vulnerabilities, unknown vulnerabilities, and malicious code. You trust your business to
the libraries that you use.

INVENTORY: Gather information about your current library situation

Getting some real data about your organization’s library use is a good way to get started. While broad studies like
this are useful indicators, building momentum in an organization typically requires specific findings about your
organization. We recommend metrics around what libraries and frameworks are in use, how far out-of-date and out-
of-version they are, the use of viral and unapproved licenses, and whether they have known vulnerabilities.

ANALYZE: Check the project and the source for yourself

Exercise a degree of restraint in the libraries that are used. Before trusting your enterprise to code of unknown
provenance, we recommend a vetting process that gathers information about the team building the library and the
process they followed to develop it. Minimally, open source projects should have an approved license, a process by
which contributions are reviewed for security, and the ability to respond to security vulnerability reports. Consider
the use of some recently available software tools to provide this capability.

The only way to deal with the risk of unknown vulnerabilities in libraries is to have someone who understands security
analyze the source code. Static analysis of libraries is best thought of as providing hints where security vulnerabilities
might be located in the code, not a replacement for experts. The lack of context with libraries makes it virtually impos-
sible for tools to conclusively identify vulnerabilities. Manual code review can be used at various levels of rigor from
the common flaws level, like the OWASP Top Ten, all the way up to searching for malicious code and rootkits. Be sure
to discuss the level of rigor you require with reviewers.

CONTROL: Restrict the use of unapproved libraries

One way to gain control over ad-hoc library use is to establish a local repository that only contains approved li-
braries. A strict version of this policy could block direct access to Central by developers, although we have
anecdotal evidence that this frequently results in “workarounds” where developers download jar files
directly or access other open repositories. A better approach is to create a governance process around library use and
help development groups take advantage of it.

Consider enabling the Java SecurityManager, sometimes known as the “sandbox.” Java was originally designed with
security features to allow remotely controlled code known as “applets” to run within the browser without compro-
mising security. The Java SecurityManager was designed to keep this potentially malicious code in a “sandbox” where
it could do no harm. When you consider that libraries are also remotely controlled code, the solution seems clear.
The SecurityManager can prevent libraries from making dangerous calls and make many rootkits impossible.

Also consider creating a “Secure Use” guideline that details how frameworks and libraries are allowed to be used in
your organization. The guideline should specifically detail the patterns for using a library securely and point out any
known patterns that could lead to an insecure application.

MONITOR: Keep libraries up-to-date

Development teams should plan for and allocate resources to keep libraries up-to-date. In most cases, updates can
be made compatible with an existing application without significant rework. Note that major releases may require
significant rework. This is the cost that you incur as result of using the library in the first place, rather than investing in
writing your own code. We recommend establishing systems and processes for monitoring the libraries that you are
using. This will help you to identify and respond to security vulnerabilities and updates.

19)

The Unfortunate Reality of Insecure Libraries

Conclusions

The use of libraries has become a pervasive, almost overwhelming aspect, of modern software develop-
ment. In the past few years, the use of dependency management tools has caused a significant increase in
the number of libraries involved in a typical application. In this paper, we examined some of the security
implications of this change and conclude that there are significant risks associated with the use of libraries.
We recommend that any organization building critical software applications protect itself against these risks
by taking steps to inventory, analyze, control, and monitor the use of libraries across the organization.

About Aspect Security

Founded in 2002, Aspect Security is a consulting firm focused exclusively on application security, ensuring
that the software that drives business is protected against hackers. Aspect’s engineers analyze, test and
validate approximately 5,000,000 lines of critical application code every month. Aspect unearths more than
10,000 vulnerabilities every year across a wide range of technologies and architectures, and the company’s
practical recommendations dramatically improve clients’ security posture. Aspect supports a worldwide
clientele with critical applications in the government, defense, financial, healthcare, services and retail
sectors. Aspect Security is a founding member of the Open Web Application Security Project (OWASP).

About the Authors
Jeff Williams is the CEO and co-founder of Aspect Security, a professional
services company focused on application security training, protection, and
management. As a founding member of OWASP and its Chairman for eight
years, Jeff grew OWASP from a small mailing list into a global foundation with
tens of thousands of participants, hundreds of chapters, worldwide confer-
ences, and many major corporate members. Jeff conceived of and launched
widely adopted projects such the OWASP Top Ten, WebGoat, the Application
Security Verification Standard (ASVS), Risk Rating Methodology and Enterprise
Security API (ESAPI). You can contact him at jeff.williams@aspectsecurity.com.

Arshan Dabirsiaghi is the Director of Research at Aspect Security. Arshan
specializes in advanced Web security including Web 2.0 security, rich input
validation, and instrumentation. Arshan is a frequent speaker at major appli-
cation security conferences including BlackHat and OWASP. Arshan is also the
author of the OWASP AntiSamy, OWASP ESAPI WAF, and JavaSnoop security
projects. You can reach him at arshan.dabirsiaghi@aspectsecurity.com.

www.aspectsecurity.com

